20 research outputs found

    Glucosamine and chondroitin sulfate supplementation to treat symptomatic disc degeneration: Biochemical rationale and case report

    Get PDF
    BACKGROUND: Glucosamine and chondroitin sulfate preparations are widely used as food supplements against osteoarthritis, but critics are skeptical about their efficacy, because of the lack of convincing clinical trials and a reasonable scientific rationale for the use of these nutraceuticals. Most trials were on osteoarthritis of the knee, while virtually no documentation exists on spinal disc degeneration. The purpose of this article is to highlight the potential of these food additives against cartilage degeneration in general, and against symptomatic spinal disc degeneration in particular, as is illustrated by a case report. The water content of the intervertebral disc is a reliable measure of its degeneration/ regeneration status, and can be objectively determined by Magnetic Resonance Imaging (MRI) signals. CASE PRESENTATION: Oral intake of glucosamine and chondroitin sulfate for two years associated with disk recovery (brightening of MRI signal) in a case of symptomatic spinal disc degeneration. We provide a biochemical explanation for the possible efficacy of these nutraceuticals. They are bioavailable to cartilage chondrocytes, may stimulate the biosynthesis and inhibit the breakdown of their extracellular matrix proteoglycans. CONCLUSION: The case suggests that long-term glucosamine and chondroitin sulfate intake may counteract symptomatic spinal disc degeneration, particularly at an early stage. However, definite proof requires well-conducted clinical trials with these food supplements, in which disc de-/regeneration can be objectively determined by MRI. A number of biochemical reasons (that mechanistically need to be further resolved) explain why these agents may have cartilage structure- and symptom-modifying effects, suggesting their therapeutic efficacy against osteoarthritis in general

    Structure of the keratan sulphate chains attached to fibromodulin isolated from bovine tracheal cartilage. Oligosaccharides generated by keratanase digestion.

    Get PDF
    The structure of the repeat region and chain caps of the N-linked keratan sulphate chains attached to bovine tracheal cartilage fibromodulin has been examined. The chains were fragmented by keratanase digestion, the resultant oligosaccharides isolated by strong anion-exchange chromatography, and their structures determined using high-field 1H-n.m.r. spectroscopy. The chains were found to possess the following general structure: [formula: see text] All of the capping oligosaccharides isolated terminate with alpha(2-3)-linked N-acetylneuraminic acid. No alpha(2-6)-linked N-acetylneuraminic acid chain terminators, nor any fucose, alpha (1-3)-linked to N-acetylglucosamine along the repeat region, were detected. This work demonstrates that the structure of the repeat region and chain caps of N-linked keratan sulphate attached to fibromodulin isolated from bovine tracheal cartilage is identical with that of O-linked keratan sulphate chains attached to aggrecan derived from non-articular cartilage

    Capillary Electrophoresis For Total Glycosaminoglycan Analysis

    No full text
    A capillary zone electrophoresis-laser-induced fluorescence detection (CZE-LIF) method was developed for the simultaneous analysis of disaccharides derived from heparan sulfate, chondroitin sulfate/dermatan sulfate, hyaluronan, and keratan sulfate. Glycosaminoglycans (GAGs) were first depolymerized with the mixture of GAG lyases (heparinase I, II, III and chondroitinase ABC and chondroitinase AC II) and GAG endohydrolase (keratinase II) and the resulting disaccharides were derivatized by reductive amination with 2-aminoacridone. Nineteen fluorescently labeled disaccharides were separated using 50 mM phosphate buffer (pH 3.3) under reversed polarity at 25 kV. Using these conditions, all the disaccharides examined were baseline separated in less then 25 min. This CZE-LIF method gave good reproducibility for both migration time (a parts per thousand currency sign1.03 % for intraday and a parts per thousand currency sign4.4 % for interday) and the peak area values (a parts per thousand currency sign5.6 % for intra- and a parts per thousand currency sign8.69 % for interday). This CZE-LIF method was used for profiling and quantification of GAG derivative disaccharides in bovine cornea. The results show that the current CZE-LIF method offers fast, simple, sensitive, reproducible determination of disaccharides derived from total GAGs in a single run.Wo
    corecore